Peroxiredoxin-3 Is Involved in Bactericidal Activity through the Regulation of Mitochondrial Reactive Oxygen Species
نویسندگان
چکیده
Peroxiredoxin-3 (Prdx3) is a mitochondrial protein of the thioredoxin family of antioxidant peroxidases and is the principal peroxidase responsible for metabolizing mitochondrial hydrogen peroxide. Recent reports have shown that mitochondrial reactive oxygen species (mROS) contribute to macrophage-mediated bactericidal activity in response to Toll-like receptors. Herein, we investigated the functional effect of Prdx3 in bactericidal activity. The mitochondrial localization of Prdx3 in HEK293T cells was confirmed by cell fractionation and confocal microscopy analyses. To investigate the functional role of Prdx3 in bactericidal activity, Prdx3-knockdown (Prdx3KD) THP-1 cells were generated. The mROS levels in Prdx3KD THP-1 cells were significantly higher than those in control THP-1 cells. Moreover, the mROS levels were markedly increased in response to lipopolysaccharide. Notably, the Salmonella enterica serovar Typhimurium infection assay revealed that the Prdx3KD THP-1 cells were significantly resistant to S. Typhimurium infection, as compared with control THP-1 cells. Taken together, these results indicate that Prdx3 is functionally important in bactericidal activity through the regulation of mROS.
منابع مشابه
Peroxiredoxin-6 Negatively Regulates Bactericidal Activity and NF-κB Activity by Interrupting TRAF6-ECSIT Complex
A TRAF6-ECSIT complex is crucial for the generation of mitochondrial reactive oxygen species (mROS) and nuclear factor-kappa B (NF-κB) activation induced by Toll-like receptor 4 (TLR4). Peroxiredoxin-6 (Prdx6) as a member of the peroxiredoxin family of antioxidant enzymes is involved in antioxidant protection and cell signaling. Here, we report on a regulatory role of Prdx6 in mROS production a...
متن کاملReactive oxygen species level, mitochondrial transcription factor A gene expression and succinate dehydrogenase activity in metaphase II oocytes derived from in vitro cultured vitrified mouse ovaries
The aim of this study was to evaluate the effects of ovarian tissue vitrification and two-step in vitro culture on the metaphase II (MII) oocyte reactive oxygen species (ROS) level, mitochondrial transcription factor A (TFAM) expression and succinate dehydrogenase (SDH) activity. After collection of neonatal mouse ovaries, 45 ovaries were vitrified and the others (n = 45) were...
متن کاملCuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملPortulaca oleracea protects H9c2 cardiomyocytes against doxorubicin-induced toxicity via regulation of oxidative stress and apoptosis
Abstract Background and Objectives: Doxorubicin as an effective chemotherapeutic agent is frequently used in various cancers. Nowadays, the application of doxorubicin is limited due to its cardiotoxic effects. The important mechanism which is involved in the cardiac injury of doxorubicin is the generation of reactive oxygen species; therefore antioxidant compounds may reduce cardiotoxicity. ...
متن کاملExpression of a mitochondrial peroxiredoxin prevents programmed cell death in Leishmania donovani.
Leishmania promastigote cells transmitted by the insect vector get phagocytosed by macrophages and convert into the amastigote form. During development and transformation, the parasites are exposed to various concentrations of reactive oxygen species, which can induce programmed cell death (PCD). We show that a mitochondrial peroxiredoxin (LdmPrx) protects Leishmania donovani from PCD. Whereas ...
متن کامل